Iranian Journal of Mathematical Sciences and Informatics
Vol. 3, No. 2 (2008), pp. 55-67
DOI: 10.7508/ijmsi.2008.02.006

## The Polynomials of a Graph

S. Sedghi ${ }^{a, *}$, N. Shobe ${ }^{b}$ and M. A. Salahshoor ${ }^{c}$<br>${ }^{a}$ Department of Mathematics, Islamic Azad University-Ghaemshar Branch, Iran<br>${ }^{b}$ Department of Mathematics, Islamic Azad University-Babol Branch, Iran<br>${ }^{c}$ Department of Mathematics, Islamic Azad University-Savadkooh Branch, Iran<br>\[ \begin{gathered} E-mail: sedghi_gh@yahoo.com<br>E-mail: nabi_shobe@yahoo.com<br>E-mail: msalahshour2000@yahoo.com \end{gathered} \]

Abstract. In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula:

$$
\sum_{u \in V(G)} d_{u}^{k}=\sum_{j=1}^{k} a_{k j} S_{G}^{(j)}(1) .
$$

Keywords: Graph, polynomial, graphical sequence.

2000 Mathematics subject classification: P54E40; 54E35; 54H25.

## 1. Introduction

The graphs in this paper are connected and simple. Denote the vertex and edge sets of graph $G$ by $V(G)$ and $E(G)$, respectively. For a simple graph $G(p, q)$, we

[^0]Received 20 January 2009; Accepted 20 April 2009
(C)2008 Academic Center for Education, Culture and Research TMU
define the degree sequence of $G$ as

$$
S: d_{1}, d_{2}, \cdots, d_{p}
$$

where $d_{i}=\operatorname{degv}_{i}, 1 \leq i \leq p$, and $v_{i}$ 's are vertices of $G$. Suppose $a_{0}$ is number of vertices of degree $0, a_{1}$ the number of vertices of degree $1, \ldots$, and $a_{\Delta(G)}$ is number of number vertices of degree $\Delta(G)$, where $\Delta(G)=\max \left\{d_{i}\right\}$. The polynomial of $G$ is defined as:

Definition 1.1. If $S: d_{1}, d_{2}, \cdots, d_{p}$ is a degree sequence of graph $G$. Then the polynomial of graph $G$ is

$$
S_{G}(x)=\sum_{j=0}^{\Delta(G)} a_{j} x^{j}
$$

Also a polynomial $p(x)$ is said to be graphical if there exists a graph $G$ such that $p(x)=S_{G}(x)$.

Example 1.2. Suppose $G$ is defined by the following diagram:

-

Then the degree sequence of $G$ is $S: 0,1,1,2,3,3$ and $\Delta(G)=3$. Thus the polynomial of $G$ is

$$
S_{G}(x)=\sum_{j=0}^{3} a_{j} x^{j}
$$

where $a_{0}=1, a_{1}=2, a_{2}=1$ and $a_{3}=2$. Hence we have

$$
S_{G}(x)=1 x^{0}+2 x+1 x^{2}+2 x^{3}=1+2 x+x^{2}+2 x^{3} .
$$

Remark 1.3. It is easy to see that

$$
S_{G}(x)=\sum_{j=0}^{\Delta(G)} a_{j} x^{j}=\sum_{u \in V(G)} x^{d_{u}}
$$

where $d_{u}$ is the degree of $u$.

Corollary 1.4. If $G(p, q)$ is a graph with $p$ vertices and $q$ edges, then we have:
(1) $S_{G}(1)=p$
(2) $\sum_{j=0}^{\Delta(G)} j a_{j}=2 q$
(3) $S_{G}^{\prime}(1)=2 q=\sum_{u \in V(G)} d_{u}$

Suppose $P_{n}, C_{n}, K_{n}$ denoted the path, cycle and complete graphs with exactly $n$ vertices, respectively. Also a general k-regular graph is denoted by $G_{k}$. Then,

$$
\begin{array}{ll}
S_{P_{n}}(x)=2 x+(n-2) x^{2} & S_{C_{n}}(x)=n x^{2} \\
S_{K_{n}}(x)=n x^{n-1} & S_{G_{k}}(x)=p x^{k}
\end{array}
$$

Definition 1.5. Let $G_{1}$ and $G_{2}$ be two graphs. If $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\phi$. Then
(1) $G_{1} \cup G_{2}$ is a graph that $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right)$
(2) $G_{1} \times G_{2}$ is a graph that $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left\{(u, v),\left(u^{\prime}, v^{\prime}\right)\right\} \in$ $E\left(G_{1} \times G_{2}\right)$ if and only if $u=u^{\prime}$ and $\left\{v, v^{\prime}\right\} \in E\left(G_{2}\right)$ or $v=v^{\prime}$ and $\left\{u, u^{\prime}\right\} \in E\left(G_{1}\right)$
(3) $G_{1}+G_{2}$ is a graph that $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1}+G_{2}\right)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{\{u, v\} \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$

Example 1.6. Suppose $G_{1}$ and $G_{2}$ are two graphs such that their diagrams are as follows:

then the diagram graph $G_{1} \times G_{2}$ and $G_{1}+G_{2}$ as follows:


$$
G_{1} \times G_{2}
$$



$$
G_{1}+G_{2}
$$

Theorem 1.7. If $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ are two graphs, then the polynomial of graphs $G_{1} \cup G_{2}, G_{1} \times G_{2}$ and $G_{1}+G_{2}$ are given by
(1) $S_{G_{1} \cup G_{2}}(x)=S_{G_{1}}(x)+S_{G_{2}}(x)$
(2) $S_{G_{1} \times G_{2}}(x)=S_{G_{1}}(x) . S_{G_{2}}(x)$
(3) $S_{G_{1}+G_{2}}(x)=x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} S_{G_{2}}(x)$

Proof.

$$
\begin{align*}
S_{G_{1} \cup G_{2}}(x) & =\sum_{u \in V\left(G_{1} \cup G_{2}\right)} x^{d_{u}}=\sum_{u \in V\left(G_{1}\right)} x^{d_{u}}+\sum_{u \in V\left(G_{2}\right)} x^{d_{u}}  \tag{1}\\
& =S_{G_{1}}(x)+S_{G_{2}}(x) \\
S_{G_{1} \times G_{2}}(x) & =\sum_{u \in V\left(G_{1} \times G_{2}\right)} x^{d_{u}}=\sum_{u=\left(u_{1}, u_{2}\right) \in V\left(G_{1} \times G_{2}\right)} x^{d_{u}}  \tag{2}\\
& =\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{u_{2} \in V\left(G_{2}\right)} x^{d_{u_{1}}+d_{u_{2}}}=\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{u_{2} \in V\left(G_{2}\right)} x^{d_{u_{1}}} x^{d_{u_{2}}} \\
& =\sum_{u_{1} \in V\left(G_{1}\right)} x^{d_{u_{1}}} \cdot \sum_{u_{2} \in V\left(G_{2}\right)} x^{d_{u_{2}}} \\
& =S_{G_{1}}(x) \cdot S_{G_{2}}(x)
\end{align*}
$$

$$
\begin{align*}
S_{G_{1}+G_{2}}(x) & =\sum_{u \in V\left(G_{1}+G_{2}\right)} x^{d_{u}}=\sum_{u \in V\left(G_{1}\right)} x^{d_{u}+p_{2}}+\sum_{u \in V\left(G_{2}\right)} x^{d_{u}+p_{1}}  \tag{3}\\
& =x^{p_{2}} \sum_{u \in V\left(G_{1}\right)} x^{d_{u}}+x^{p_{1}} \sum_{u \in V\left(G_{2}\right)} x^{d_{u}} \\
& =x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} S_{G_{2}}(x)
\end{align*}
$$

Corollary 1.8. If $S_{G_{1}}(x)$ and $S_{G_{2}}(x)$ are graphical then
(1) $S_{G_{1}}(x) \cdot S_{G_{2}}(x)$ is graphical and conversely.
(2) $x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} S_{G_{2}}(x)$ is graphical and conversely.
(3) $\sum_{u \in V\left(G_{1} \times G_{2}\right)} d_{u}=2\left(p_{1} q_{2}+p_{2} q_{1}\right)$
(4) $\sum_{u \in V\left(G_{1}+G_{2}\right)} d_{u}=2\left(p_{1} p_{2}+q_{1}+q_{2}\right)$

Example 1.9. The polynomial $S_{G}(x)=4 x^{2}+4 x^{3}+x^{4}$ is graphical, because

$$
S_{G}(x)=4 x^{2}+4 x^{3}+x^{4}=\left(2 x+x^{2}\right)^{2}
$$

On the other hand, we have the following graph for the polynomial $S_{G_{1}}(x)=2 x+x^{2}$.


Hence the polynomial $S_{G}(x)$ is graphical, because $S_{G}(x)=S_{G_{1}}(x) \times S_{G_{1}}(x)$. Also its graph is as follows:


Example 1.10. The polynomial $S_{G}(x)=3 x^{4}+2 x^{3}$ is graphical, because

$$
S_{G}(x)=3 x^{4}+2 x^{3}=2 x^{4}+x^{4}+2 x^{3}=x^{3}(2 x)+x^{2}\left(x^{2}+2 x\right)
$$

On the other hand, we have the following graphs for the polynomials $S_{G_{1}}(x)=2 x$ and $S_{G_{2}}(x)=x^{2}+2 x$, respectively:


Hence the polynomial $S_{G}(x)$ is graphical, because $S_{G}(x)=x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} S_{G_{2}}(x)$. Also its graph is as following:


Definition 1.11. Let $G$ be a graph. The polynomial $H_{G}(x)$ is defined as follows:

$$
H_{G}(x)=\sum_{\{u, v\} \in E(G)} x^{d_{u}+d_{v}}
$$

Example 1.12. The polynomial $H_{G}(x)=x^{3}+x^{3}=2 x^{3}$ is the graph polynomial of the following graph:


Corollary 1.13. Let $G(p, q)$ is a graph with $p$ vertices and $q$ edges. Then we have:

$$
\begin{array}{ll}
H_{G}(1)=q & H_{G}^{\prime}(1)=\sum_{\{u, v\} \in E(G)} d_{u}+d_{v}=\sum_{u \in V(G)} d_{u}{ }^{2} \\
H_{P_{n}}(x)=2 x^{3}+(n-3) x^{4} & H_{C_{n}}(x)=n x^{4} \\
H_{K_{n}}(x)=\frac{n(n-1)}{2} x^{2 n-2} & H_{G_{k}}(x)=q x^{2 k}
\end{array}
$$

Theorem 1.14. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two graphs. Then
(1) $H_{G_{1} \cup G_{2}}(x)=H_{G_{1}}(x)+H_{G_{2}}(x)$
(2) $H_{G_{1} \times G_{2}}(x)=H_{G_{1}}(x) \cdot S_{G_{2}}\left(x^{2}\right)+H_{G_{2}}(x) . S_{G_{1}}\left(x^{2}\right)$
(3) $H_{G_{1}+G_{2}}(x)=x^{2 p_{2}} H_{G_{1}}(x)+x^{2 p_{1}} H_{G_{2}}(x)+x^{p_{1}+p_{2}} S_{G_{1}}(x) . S_{G_{2}}(x)$

Proof. (1) is trivial. To prove (2), we have:

$$
\begin{aligned}
H_{G_{1} \times G_{2}}(x)= & \sum_{\{u, v\} \in E\left(G_{1} \times G_{2}\right)} x^{d_{u}+d_{v}} \\
= & \sum_{u_{1}=v_{1}} \sum_{\left\{u_{2}, v_{2}\right\} \in E\left(G_{2}\right)} x^{2 d_{u_{1}}+d_{v_{2}}+d_{u_{2}}} \\
& +\sum_{\left\{u_{1}, v_{1}\right\} \in E\left(G_{1}\right)} \sum_{u_{2}=v_{2}} x^{d_{u_{1}}+d_{v_{1}}+2 d_{u_{2}}} \\
= & \sum_{\left\{u_{2}, v_{2}\right\} \in E\left(G_{2}\right)} x^{d_{u_{2}}+d_{v_{2}}} \sum_{u_{1} \in V\left(G_{1}\right)}\left(x^{2}\right)^{d_{u_{1}}} \\
& +\sum_{\left\{u_{1}, v_{1}\right\} \in E\left(G_{1}\right)} x^{d_{u_{1}}+d_{v_{1}}} \sum_{u_{2} \in V\left(G_{2}\right)}\left(x^{2}\right)^{d_{u_{2}}} \\
= & H_{G_{2}}(x) S_{G_{1}}\left(x^{2}\right)+H_{G_{1}}(x) S_{G_{2}}\left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
H_{G_{1}+G_{2}}(x)= & \sum_{\{u, v\} \in E\left(G_{1}+G_{2}\right)} x^{d_{u}+d_{v}} \\
= & \sum_{\{u, v\} \in E\left(G_{1}\right)} x^{d_{u}+d_{v}+2 p_{2}}+\sum_{\{u, v\} \in E\left(G_{2}\right)} x^{d_{u}+d_{v}+2 p_{1}} \\
& +\sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)} x^{d_{u}+d_{v}+p_{1}+p_{2}} \\
= & x^{2 p_{2}} \sum_{\{u, v\} \in E\left(G_{1}\right)} x^{d_{u}+d_{v}}+x^{2 p_{1}} \sum_{\{u, v\} \in E\left(G_{2}\right)} x^{d_{u}+d_{v}} \\
& +x^{p_{1}+p_{2}} \sum_{u \in V\left(G_{1}\right)} x^{d_{u}} \sum_{v \in V\left(G_{2}\right)} x^{d_{v}} \\
= & x^{2 p_{2}} H_{G_{1}}(x)+x^{2 p_{1}} H_{G_{2}}(x)+x^{p_{1}+p_{2}} S_{G_{1}}(x) S_{G_{2}}(x)
\end{aligned}
$$

Example 1.15. Consider the following diagrams for graphs $G_{1}$ and $G_{2}$ :

then, we have:

$$
\begin{array}{ll}
H_{G_{1}}(x)=2 x^{3} & S_{G_{1}}(x)=2 x+x^{2} \\
H_{G_{2}}(x)=3 x^{4} & S_{G_{2}}(x)=3 x^{2}
\end{array}
$$

Thus:

$$
\begin{aligned}
H_{G_{1}+G_{2}}(x) & =x^{6}\left(2 x^{3}\right)+x^{6}\left(3 x^{4}\right)+x^{6}\left(2 x+x^{2}\right)\left(3 x^{2}\right) \\
& =2 x^{9}+3 x^{10}+6 x^{9}+3 x^{10}=8 x^{9}+6 x^{10}
\end{aligned}
$$

Hence the diagram $G_{1}+G_{2}$ is:


## Corollary 1.16.

$$
\sum_{u \in V\left(G_{1} \times G_{2}\right)} d_{u}^{2}=p_{2} \sum_{u \in V\left(G_{1}\right)} d_{u}{ }^{2}+p_{1} \sum_{u \in V\left(G_{2}\right)} d_{u}{ }^{2}+8 q_{1} q_{2}
$$

Proof. We know that

$$
H_{G_{1} \times G_{2}}(x)=H_{G_{1}}(x) S_{G_{2}}\left(x^{2}\right)+H_{G_{2}}(x) S_{G_{1}}\left(x^{2}\right)
$$

Hence,

$$
\begin{aligned}
H_{G_{1} \times G_{2}}^{\prime}(x)= & H_{G_{1}}^{\prime}(x) S_{G_{2}}\left(x^{2}\right)+2 x H_{G_{1}}(x) S_{G_{2}}^{\prime}\left(x^{2}\right) \\
& +H_{G_{2}}^{\prime}(x) S_{G_{1}}\left(x^{2}\right)+2 x H_{G_{2}}(x) S_{G_{1}}^{\prime}\left(x^{2}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
H_{G_{1} \times G_{2}}^{\prime}(1)= & H_{G_{1}}^{\prime}(1) S_{G_{2}}(1)+2 H_{G_{1}}(1) S_{G_{2}}^{\prime}(1) \\
& +H_{G_{2}}^{\prime}(1) S_{G_{1}}(1)+2 H_{G_{2}}(1) S_{G_{1}}^{\prime}(1)
\end{aligned}
$$

On the other hand, we know that $H_{G}(1)=q, H_{G}^{\prime}(1)=\sum_{u \in V(G)} d_{u}{ }^{2}, S_{G}(1)=p$ and $S_{G}^{\prime}(1)=2 q$. Thus

$$
\begin{aligned}
\sum_{u \in V\left(G_{2} \times G_{1}\right)} d_{u}^{2} & =p_{2} \sum_{u \in V\left(G_{1}\right)} d_{u}^{2}+4 q_{1} q_{2}+p_{1} \sum_{u \in V\left(G_{2}\right)} d_{u}^{2}+4 q_{1} q_{2} \\
& =p_{2} \sum_{u \in V\left(G_{1}\right)} d_{u}^{2}+p_{1} \sum_{u \in V\left(G_{2}\right)} d_{u}^{2}+8 q_{1} q_{2}
\end{aligned}
$$

Definition 1.17. Let $G$ be a graph. The polynomial $F_{G}(x)$ is defined as follows:

$$
F_{G}(x)=\sum_{u \in V(G)} d_{u} x^{d_{u}}
$$

Example 1.18. The polynomial of the graph $G$ defined by the following graph is $H_{G}(x)=2 x+2 x^{2}$.


Corollary 1.19. We have:

$$
\begin{array}{ll}
F_{G}(1)=S_{G}^{\prime}(1) & F_{G}^{\prime}(1)=H_{G}^{\prime}(1) \\
F_{P_{n}}(x)=2 x+2(n-2) x^{2} & F_{C_{n}}(x)=2 n x^{2} \\
F_{K_{n}}(x)=n(n-1) x^{n-1} & F_{G_{k}}(x)=k p x^{k}
\end{array}
$$

Theorem 1.20. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two graphs. Then
(1) $F_{G_{1} \cup G_{2}}(x)=F_{G_{1}}(x)+F_{G_{2}}(x)$
(2) $F_{G_{1} \times G_{2}}(x)=F_{G_{1}}(x) \cdot S_{G_{2}}(x)+F_{G_{2}}(x) \cdot S_{G_{1}}(x)$
(3) $F_{G_{1}+G_{2}}(x)=x^{p_{2}} F_{G_{1}}(x)+p_{2} x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} F_{G_{2}}(x)+p_{1} x^{p_{1}} S_{G_{2}}(x)$

Proof. (1) is trivial. Prove (2), we have:

$$
\begin{aligned}
& F_{G_{1} \times G_{2}}(x)=\sum_{u \in V\left(G_{1} \times G_{2}\right)} d_{u} x^{d_{u}} \\
& =\sum_{\left(u_{1}, u_{2}\right) \in V\left(G_{1}\right) \times V\left(G_{2}\right)}\left(d_{u_{1}}+d_{u_{2}}\right) x^{d_{u_{1}}+d_{u_{2}}} \\
& =\sum_{u_{1} \in V\left(G_{1}\right)} \sum_{u_{2} \in V\left(G_{2}\right)}\left(d_{u_{1}}+d_{u_{2}}\right) x^{d_{u_{1}}+d_{u_{2}}} \\
& =\sum_{u_{2} \in V\left(G_{2}\right)} x^{d_{u_{2}}} \sum_{u_{1} \in V\left(G_{1}\right)} d_{u_{1}} x^{d_{u_{1}}}+\sum_{u_{1} \in V\left(G_{1}\right)} x^{d_{u_{1}}} \sum_{u_{2} \in V\left(G_{2}\right)} d_{u_{2}} x^{d_{u_{2}}} \\
& =F_{G_{1}}(x) \cdot S_{G_{2}}(x)+F_{G_{2}}(x) \cdot S_{G_{1}}(x) \\
& F_{G_{1}+G_{2}}(x)=\sum_{u \in V\left(G_{1}+G_{2}\right)} d_{u} x^{d_{u}} \\
& =\sum_{u \in V\left(G_{1}\right)}\left(d_{u}+p_{2}\right) x^{d_{u}+p_{2}}+\sum_{u \in V\left(G_{2}\right)}\left(d_{u}+p_{1}\right) x^{d_{u}+p_{1}} \\
& =x^{p_{2}} \sum_{u \in V\left(G_{1}\right)} d_{u} x^{d_{u}}+p_{2} x^{p_{2}} \sum_{u \in V\left(G_{1}\right)} x^{d_{u}} \\
& +x^{p_{1}} \sum_{u \in V\left(G_{2}\right)} d_{u} x^{d_{u}}+p_{1} x^{p_{1}} \sum_{u \in V\left(G_{2}\right)} x^{d_{u}} \\
& =x^{p_{2}} F_{G_{1}}(x)+p_{2} x^{p_{2}} S_{G_{1}}(x)+x^{p_{1}} F_{G_{2}}(x)+p_{1} x^{p_{1}} S_{G_{2}}(x)
\end{aligned}
$$

Definition 1.21. Let $G$ be a graph. The polynomial $W_{G}(x)$ is defined as following:

$$
W_{G}(x)=\sum_{\{u, v\} \in E(G)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}}
$$

Example 1.22. Consider the following diagram for the graph $G$. Then $W_{G}(x)=$ $3 x^{3}+3 x^{3}=6 x^{3}$.


Corollary 1.23. We have:

$$
\begin{array}{ll}
W_{G}(1)=\sum_{\{u, v\} \in E(G)} d_{u}+d_{v}=\sum_{u \in V(G)} d_{u}^{2} & W_{G}(1)=H_{G}^{\prime}(1) \\
W_{P_{n}}(x)=6 x^{3}+4(n-3) x^{4} & W_{C_{n}}(x)=4 n x^{4} \\
W_{K_{n}}(x)=n(n-1)^{2} x^{2 n-2} & W_{G_{k}}(x)=2 k q x^{2 k}
\end{array}
$$

Theorem 1.24. Let $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ be two graphs. Then
(1) $W_{G_{1} \cup G_{2}}(x)=W_{G_{1}}(x)+W_{G_{2}}(x)$
(2) $W_{G_{1} \times G_{2}}(x)=2 F_{G_{1}}\left(x^{2}\right) \cdot H_{G_{2}}(x)+S_{G_{1}}\left(x^{2}\right) \cdot W_{G_{2}}(x)+2 F_{G_{2}}\left(x^{2}\right) \cdot H_{G_{1}}(x)+$ $S_{G_{2}}\left(x^{2}\right) \cdot W_{G_{1}}(x)$
(3) $W_{G_{1}+G_{2}}(x)=x^{2 p_{2}} W_{G_{1}}(x)+2 p_{2} x^{2 p_{2}} H_{G_{1}}(x)+x^{2 p_{1}} W_{G_{2}}(x)+2 p_{1} x^{2 p_{1}} H_{G_{2}}(x)+$ $x^{p_{1}+p_{2}} F_{G_{1} \times G_{2}}(x)+\left(p_{1}+p_{2}\right) x^{p_{1}+p_{2}} S_{G_{1} \times G_{2}}(x)$

Proof. (1) is trivial. To prove (2), we consider the following equation:

$$
\begin{aligned}
& W_{G_{1} \times G_{2}}(x)=\sum_{\{u, v\} \in E\left(G_{1} \times G_{2}\right)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}} \\
& =\sum_{u_{1}=v_{1}} \sum_{\left\{u_{2}, v_{2}\right\} \in E\left(G_{2}\right)}\left(2 d_{u_{1}}+d_{u_{2}}+d_{v_{2}}\right) x^{2 d_{u_{1}}+d_{u_{2}}+d_{v_{2}}} \\
& +\sum_{u_{2}=v_{2}} \sum_{\left\{u_{1}, v_{1}\right\} \in E\left(G_{1}\right)}\left(2 d_{u_{2}}+d_{u_{1}}+d_{v_{1}}\right) x^{2 d_{u_{2}}+d_{u_{1}}+d_{v_{1}}} \\
& =2 \sum_{u_{1} \in V\left(G_{1}\right)} d_{u_{1}}\left(x^{2}\right)^{d_{u_{1}}} \sum_{\left\{u_{2}, v_{2}\right\} \in E\left(G_{2}\right)} x^{d_{u_{2}}+d_{v_{2}}} \\
& +\sum_{u_{1} \in V\left(G_{1}\right)}\left(x^{2}\right)^{d_{u_{1}}} \sum_{\left\{u_{2}, v_{2}\right\} \in E\left(G_{2}\right)}\left(d_{u_{2}}+d_{v_{2}}\right) x^{d_{u_{2}}+d_{v_{2}}} \\
& +2 \sum_{u_{2} \in V\left(G_{2}\right)} d_{u_{2}}\left(x^{2}\right)^{d_{u_{2}}} \sum_{\left\{u_{1}, v_{1}\right\} \in E\left(G_{1}\right)} x^{d_{u_{1}}+d_{v_{1}}} \\
& +\sum_{u_{2} \in V\left(G_{2}\right)}\left(x^{2}\right)^{d_{u_{2}}} \sum_{\left\{u_{1}, v_{1}\right\} \in E\left(G_{1}\right)}\left(d_{u_{1}}+d_{v_{1}}\right) x^{d_{u_{1}}+d_{v_{1}}} \\
& =2 F_{G_{1}}\left(x^{2}\right) \cdot H_{G_{2}}(x)+S_{G_{1}}\left(x^{2}\right) \cdot W_{G_{2}}(x) \\
& +2 F_{G_{2}}\left(x^{2}\right) \cdot H_{G_{1}}(x)+S_{G_{2}}\left(x^{2}\right) \cdot W_{G_{1}}(x) \\
& W_{G_{1}+G_{2}}(x)=\sum_{\{u, v\} \in E\left(G_{1}+G_{2}\right)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}} \\
& =\sum_{\{u, v\} \in E\left(G_{1}\right)}\left(d_{u}+d_{v}+2 p_{2}\right) x^{d_{u}+d_{v}+2 p_{2}} \\
& +\sum_{\{u, v\} \in E\left(G_{2}\right)}\left(d_{u}+d_{v}+2 p_{1}\right) x^{d_{u}+d_{v}+2 p_{1}} \\
& +\sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)}\left(d_{u}+d_{v}+p_{1}+p_{2}\right) x^{d_{u}+d_{v}+p_{1}+p_{2}} \\
& =x^{2 p_{2}} \sum_{\{u, v\} \in E\left(G_{1}\right)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}}+2 p_{2} x^{2 p_{2}} \sum_{\{u, v\} \in E\left(G_{1}\right)} x^{d_{u}+d_{v}} \\
& +x^{2 p_{1}} \sum_{\{u, v\} \in E\left(G_{2}\right)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}}+2 p_{1} x^{2 p_{1}} \sum_{\{u, v\} \in E\left(G_{2}\right)} x^{d_{u}+d_{v}} \\
& +x^{p_{1}+p_{2}} \sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)}\left(d_{u}+d_{v}\right) x^{d_{u}+d_{v}} \\
& +\left(p_{1}+p_{2}\right) x^{p_{1}+p_{2}} \sum_{u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)} x^{d_{u}+d_{v}} \\
& =x^{2 p_{2}} W_{G_{1}}(x)+2 p_{2} x^{2 p_{2}} H_{G_{1}}(x)+x^{2 p_{1}} W_{G_{2}}(x)+2 p_{1} x^{2 p_{1}} H_{G_{2}}(x) \\
& +x^{p_{1}+p_{2}} F_{G_{1} \times G_{2}}(x)+\left(p_{1}+p_{2}\right) x^{p_{1}+p_{2}} S_{G_{1} \times G_{2}}(x)
\end{aligned}
$$

In the end of this paper, we define a new triangle $\mathcal{A}$ as follows:

$\mathcal{A}=$| 1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  |  |  |
| 1 | 3 | 1 |  |  |  |  |
| 1 | 7 | 6 | 1 |  |  |  |
| 1 | 15 | 25 | 10 | 1 |  |  |
| 1 | 31 | 90 | 65 | 15 | 1 |  |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ |

that entry $a_{i j}$ of triangle $\mathcal{A}$ is:

$$
a_{i j}=\left\{\begin{array}{cc}
1 & j=1 \text { or } j=i \\
a_{(i-1)(j-1)}+j a_{(i-1) j} & 1<j<i
\end{array}\right.
$$

Theorem 1.25. If $G$ is a graph with the polynomial $S_{G}(x)$, then

$$
\sum_{u \in V(G)} d_{u}^{k}=\sum_{j=1}^{k} a_{k j} S_{G}^{(j)}(1)
$$

where $k \in \mathbb{N}$ and $a_{k j} \in \mathcal{A}$.

Example 1.26. Let $G$ is a graph, such that its diagram is as following:


Hence the degree sequence and the polynomial $S_{G}(x)$ are " $1,1,2 "$ and $2 x+x^{2}$, respectively. Thus for $k=3$ we have:

$$
\sum_{u \in V(G)} d_{u}^{3}=1^{3}+1^{3}+2^{3}=10
$$

On the other hand, we have $S_{G}^{\prime}(1)=4, S_{G}^{\prime \prime}(1)=2, S_{G}^{(3)}(1)=0, a_{31}=1, a_{32}=3$ and $a_{33}=1$. Therefore

$$
\sum_{j=1}^{3} a_{3 j} S_{G}^{j}(1)=1 \times 4+3 \times 2+1 \times 0=10
$$

Proof of Theorem 1.25. According to remark (1.3) $S_{G}(x)=\sum_{u \in V(G)} x^{d_{u}}$. Hence,

$$
\begin{equation*}
S_{G}^{\prime}(x)=\sum_{u \in V(G)} d_{u} x^{d_{u}-1} \tag{1.1}
\end{equation*}
$$

therefore

$$
S_{G}^{\prime}(1)=\sum_{u \in V(G)} d_{u}
$$

On the other hand, according to table of $\mathcal{A}$ for $k=1$, we have:

$$
\sum_{j=1}^{1} a_{1 j} S_{G}^{(j)}(1)=a_{11} S_{G}^{\prime}(1)=S_{G}^{\prime}(1)
$$

From above relations, we obtain that the theorem (1.25) for $k=1$ is true. Now from the relation (1.1), we have $x S_{G}^{\prime}(x)=\sum_{u \in V(G)} d_{u} x^{d_{u}}$ then

$$
\begin{equation*}
S_{G}^{\prime}(x)+x S_{G}^{\prime \prime}(x)=\sum_{u \in V(G)} d_{u}^{2} x^{d_{u}-1} \tag{1.2}
\end{equation*}
$$

therefore

$$
S_{G}^{\prime}(1)+S_{G}^{\prime \prime}(1)=\sum_{u \in V(G)} d_{u}{ }^{2}
$$

On the other hand, according to table of $\mathcal{A}$ for $k=2$, we have:

$$
\sum_{j=1}^{2} a_{2 j} S_{G}^{(j)}(1)=a_{21} S_{G}^{\prime}(1)+a_{22} S_{G}^{\prime \prime}(1)=S_{G}^{\prime}(1)+S_{G}^{\prime \prime}(1)
$$

From two relations before, we obtain that the theorem (1.25) for $k=2$ is true. Similarly from the relation (1.2), we can prove the theorem (1.25) for $k=3$. Therefore, if we continue the above process, then the proof is completed.

## References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier Science Publishing Co., Inc., New York, 1976.
[2] M. Eliasi, B. Taeri, Schultz polynomials of composite graphs, Appl. Anal. Discrete Math., 2 (2008), 285-296.
[3] I. Gutman, Some relations between distanc-based polynomials of trees, Bulletin de l'Academie Serbe des Sciences et des Arts (Classe des Sciences Mathematiques et Naturelles), 131 (2005) 1-7.
[4] B. E. Sagan, Y.-N. Yen and P. Zhang, The Wiener polynomial of a graph, International Journal of Quantum Chemistry, 60 (5) (1996), 959-969.
[5] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1974), 17-20.


[^0]:    ${ }^{*}$ Corresponding Author

